II B.Tech - I Semester - Regular/Supplementary Examinations DECEMBER 2023

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

(Common for EEE, ECE)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Describe the simplified structures and modes of operation of NPN transistor.	L2	CO1	7 M
	b)	Measurement of an NPN BJT in a particular circuit has the base current to be $14.46 \mu \mathrm{~A}$, the emitter current to be 1.460 mA and the base-emitter voltage to be 0.7 V . For these conditions, calculate α, β and I_{S}.	L3	CO 2	7 M
OR					
2	a)	For the circuit shown below has $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{l}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega$, and $\beta=100$. Calculate the base current, the collector current, and the collector voltage. If the transistor is saturated, find $\beta_{\text {forced }}$. What value should R_{B} be raised to in order to bring the transistor to the edge of saturation?	L3	CO 2	7 M

	b)	Draw and explain the small-signal operation of MOSFET amplifier.	L3	CO 2	7 M
UNIT-III					
5	a)	Derive voltage gain, open circuit voltage gain and overall voltage gain for common gate amplifier using small signal analysis.	L3	CO3	7 M
	b)	Analyze the short-circuit current gain and unity-gain frequency for CS amplifier using hybrid- π model.	L4	CO3	7 M
OR					
6	a)	$\begin{aligned} & \text { A CS amplifier has } \mathrm{C}_{\mathrm{C} 1}=\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{\mathrm{C} 2}=1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{sig}}=100 \mathrm{~K} \Omega, \mathrm{~g}_{\mathrm{m}}=2 \mathrm{~mA} / \mathrm{V}, \\ & \mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega . \\ & \text { Calculate } \mathrm{A}_{\mathrm{M}}, \mathrm{f}_{\mathrm{P} 1}, \mathrm{f}_{\mathrm{P} 2}, \mathrm{f}_{\mathrm{P} 3}, \mathrm{f}_{\mathrm{L}} . \end{aligned}$	L3	CO3	7 M
	b)	With the help of neat diagram explain capacitively coupled common source amplifier and sketch the frequency response including three frequency bands.	L2	CO3	7 M
UNIT-IV					
7	a)	Obtain the Common-Mode gain and Common-mode Rejection ratio of MOS differential pair with small-signal operation.	L4	CO1	7 M

	b)	Explain the MOS differential pair operation with a differential input voltage.	L2	CO3	7 M
OR					
8	a)	Estimate the three components of the input offset voltage for the MOS differential pair having $\quad \mathrm{V}_{\mathrm{OV}}=0.2 \mathrm{~V}, \Delta \mathrm{R}_{\mathrm{D}} / \mathrm{R}_{\mathrm{D}}=2 \%$, $\Delta(\mathrm{W} / \mathrm{L}) /(\mathrm{W} / \mathrm{L})=2 \%$ and $\Delta \mathrm{V}_{\mathrm{t}}=2 \mathrm{mV}$.	L4	CO3	7 M
	b)	Illustrate the simple basic approach for differential-to-single ended conversion.	L3	CO1	7 M
UNIT-V					
9	a)	Consider a basic MOSFET constant current source circuit with $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{I}_{\text {REF }}=100 \mu \mathrm{~A}$ to obtain an output current whose value is $100 \mu \mathrm{~A}$. Find R if $\mathrm{Q}_{1} \& \mathrm{Q}_{2}$ are matched \& have channel length of $1 \mu \mathrm{~m}$, channel width of $10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{t}}=0.7 \mathrm{~V} \& k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{v}^{2}$. What is the lowest possible value of V_{O}. Assume $V_{A}^{\prime}=20 \mathrm{v} / \mu \mathrm{m}$. Calculate output resistance of the current source.	L3	CO4	7 M
	b)	Analyze the MOSFET current mirror circuit and derive current transfer ratio also sketch transfer characteristics.	L4	CO4	7 M
OR					
10	a)	Differentiate the MOSFET scaling techniques.	L4	CO1	7 M
	b)	Demonstrate the operation of MOS Current-Steering Circuit with neat sketch.	L2	CO 4	7 M

