II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2023

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS (Common for EEE, ECE)

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	CO	Max. Marks
	UNIT-I				•
1	a)	Describe the simplified structures and	L2	CO1	7 M
		modes of operation of NPN transistor.			
	b)	Measurement of an NPN BJT in a particular	L3	CO2	7 M
		circuit has the base current to be 14.46 μ A,			
		the emitter current to be 1.460 mA and the			
		base-emitter voltage to be 0.7 V. For these			
		conditions, calculate α , β and I _{S.}			
	-	OR			
2	a)	For the circuit shown below has	L3	CO2	7 M
		$V_{cc}=V_l=+5V$, $R_B=R_C=1K\Omega$, and $\beta=100$.			
		Calculate the base current, the collector			
		current, and the collector voltage. If the			
		transistor is saturated, find β_{forced} . What			
		value should R_B be raised to in order to			
		bring the transistor to the edge of saturation?			

		$v_{i} \stackrel{v_{cc}}{=} $			
	b)	Design the circuit for implementing the current source 'I' and analyze the operation of BJT biased using a constant-current source.	L4	CO4	7 M
		UNIT-II			
3	a)	Explain the i_d - V_{ds} relationship for the NMOS	L4	CO1	7 M
		transistor and also sketch the characteristics.			
	• •				
	b)	Analyze the large signal operation and	L4	CO2	7 M
	b)		L4	CO2	7 M

		$R_{G1} \bigvee V_{DD}$ $R_{G1} \bigvee Q_{DD}$ R_{D}			7.14
	b)	Draw and explain the small-signal operation of MOSFET amplifier.	L3	CO2	7 M
		UNIT-III			
5	a)	Derive voltage gain, open circuit voltage gain and overall voltage gain for common gate amplifier using small signal analysis.	L3	CO3	7 M
	b)	Analyze the short-circuit current gain and unity-gain frequency for CS amplifier using hybrid- π model.	L4	CO3	7 M
	1	OR	1		
6	a)	A CS amplifier has $C_{C1} = C_S = C_{C2} = 1\mu F$, $R_G = 10M\Omega$, $R_{sig} = 100 \text{ K}\Omega$, $g_m = 2 \text{ mA/V}$, $R_D = R_L = 10 \text{ K}\Omega$. Calculate $A_M, f_{P1}, f_{P2}, f_{P3}, f_L$.	L3	CO3	7 M
	b)	With the help of neat diagram explain capacitively coupled common source amplifier and sketch the frequency response including three frequency bands.	L2	CO3	7 M
		UNIT-IV			
7	a)	Obtain the Common-Mode gain and Common-mode Rejection ratio of MOS differential pair with small-signal operation.	L4	CO1	7 M

	1 \		τo	002	7 1 4	
	b)	Explain the MOS differential pair operation	L2	CO3	7 M	
		with a differential input voltage.				
OR						
8	a)	Estimate the three components of the input	L4	CO3	7 M	
		offset voltage for the MOS differential pair				
		having $V_{OV} = 0.2V$, $\Delta R_D/R_D = 2\%$,				
		$\Delta(W/L)/(W/L) = 2\%$ and $\Delta V_t = 2 \text{ mV}$.				
	b)	Illustrate the simple basic approach for	L3	CO1	7 M	
		differential-to-single ended conversion.				
				· · · · · ·		
		UNIT-V				
9	a)	Consider a basic MOSFET constant current	L3	CO4	7 M	
		source circuit with $V_{DD} = 3V$, $I_{REF} = 100 \mu A$				
		to obtain an output current whose value is				
		100 μ A. Find R if Q ₁ & Q ₂ are matched &				
		have channel length of 1µm, channel width				
		of 10µm, $V_t = 0.7V \& k'_n = 200 \mu A/v^2$. What				
		is the lowest possible value of V_{0} . Assume				
		$V'_{A} = 20 \text{ v/}\mu\text{m}$. Calculate output resistance of				
		the current source.				
	b)	Analyze the MOSFET current mirror circuit	L4	CO4	7 M	
	- /	and derive current transfer ratio also sketch				
		transfer characteristics.				
OR						
10	a)	Differentiate the MOSFET scaling	L4	CO1	7 M	
-		techniques.				
	b)	Demonstrate the operation of MOS	L2	CO4	7 M	
		Current-Steering Circuit with neat sketch.			, 111	